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An analytic formula is derived for the Rayleigh growth rate of a fluid cylinder 
immersed in a fluid of equal viscosity, and an extension is given for concentric fluid 
threads. 

The interfacial instability of a fluid cylinder of viscosity % p  suspended in a fluid of 
viscosity ,u was first studied by Rayleigh (1892) for a viscous fluid in air (A = GO). The 
usual solution approach for arbitrary i (e.g. Tomotika 1935; Chandrasekhar 1961) is 
to assume an axial interface distortion proportional to e"' cos k z ,  and determine the 
form of the stream function for low-Reynolds-number motions internal and external 
to the thread. The application of boundary conditions for the velocity and the 
tangential and normal stresses leads to an eigenvalue problem in the form of a 4 x 4 
system of equations whose solution yields ~ ( k ;  i). Simple analytical formulae for 
a(k; i) are known for i = 0 (Tomotika 1935) and iL = x! (Rayleigh 1892). 

Here we provide a direct method for treating the intermediate case where i = 1, 
thereby obtaining a formula for the linear growth rate. The idea of a ring forcing is 
used which directly incorporates in the governing equations the normal stress jump 
arising from interfacial tension influences. The use of Hankel transforms leads to an 
explicit expression for the radial velocity which is simply related to the growth rate. 

Consider a fluid thread with a nearly circular shape r = u ( 1  + c(t)coskz); e e l .  The 
viscosities are the same in both fluids (i. = 1). We seek to solve Stokes equations, and 
the boundary conditions are linearized about r = LZ (Tomotika 1935). In particular, 
there is a jump in normal stress equal to (yc/u)(  1 - ( ~ k ) ~ ) c o s k z  across r = a ;  the jump 
is represented using the delta function 6 ( r  - a) .  The momentum equation, including 
the presence of the radially directed ring force, and the continuity equation are 

" E  

U 
- Vp + pV'u + e,6(r - a ) L  (1 - (ak)') coskz = 0 and V * u  = 0. (1) 

Solutions consistent with the sinusoidal shape perturbation have the form 

116 - Y E -  

P a 
(u,(r, z ) ,  u_(r,  z ) )  = - (u,(r)  cos k z ,  Uz(r) sin k z )  p(r ,  z )  = --p(r) cos k z .  (2) 

The resulting ordinary differential equations for ( U , ,  U , ,  p) are conveniently solved 
by using Hankel transforms, where 

and so we take (U,.(s), U,(s), P ( s ) )  = (21 { U y ) , X ' ~ { U z ) ,    YO(^)). Then the continuity 
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equation is sU, + k U Z  = 0 and the momentum equation becomes 
S 
-P - (s’ + k’)  u,. + (1 - (ak)’) J l ( S U )  = 0, 

-P - (s’ + k2)  u, = 0. 

(40) 

(4b) 

a 
k 
a 

Solving for U,(s) and taking the inverse Hankel transform gives 

The interface shape evolves according to u,(r = a,z) = aCcoskz from which we see 
that ~ ( t )  K exp(ot), and using ( 5 )  the growth rate cr follows from 

sJ?(sa) 
cr = y k 2  (1 - ( ~ k ) ~ )  ds. 

Pa o (s2 + k 2 )  

The integral may be evaluated (differentiate equation 6.535, Gradshteyn & Ryzhik 
1965) and so we arrive at cr as a function of the dimensionless wavenumber a k :  

ak i 4 k )  = - (1 - w2) fl(ak)Kl(ak) + 5 ( I 1 ( U k ) K o ( U k )  - Io(ak)K,(nk))]  2 (7) Y 
Pa 

where the Ii and K i  are modified Bessel functions. Using Mathernatica, equation (7) 
may be obtained via simplification of Tomotika’s general result with 2 = 1. Equation 
(7), obtained using the simple derivation above, represents a new analytical formula 
for this classical fluid dynamics problem. 

This solution procedure using a ring forcing also yields the linear growth rate for 
concentric fluid cylinders of equal viscosity in an infinite fluid. We consider two such 
cylinders with inner radius a l  and outer radius a2, and interfacial tensions y1 and y 2 ,  
respectively. Application of the above ideas yields a quadratic equation for cr: 

where (equation 6.541, Gradshteyn & Ryzhik 1965) 

Inspection of (8) shows that cr is always real and that in the limit a2/a1 + co the un- 
stable modes predicted by (8) are the same as those given by (7). Finally, this method, 
and equation (8), may be generalized to any number of concentric fluid cylinders. 
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